Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction
نویسندگان
چکیده
Metabolic reprogramming is a key feature of tumorigenesis that is controlled by oncogenes. Enhanced utilization of glucose and glutamine are the best-established hallmarks of tumor metabolism. The oncogene c-Myc is one of the major players responsible for this metabolic alteration. However, the molecular mechanisms involved in Myc-induced metabolic reprogramming are not well defined. Here we identify p32, a mitochondrial protein known to play a role in the expression of mitochondrial respiratory chain complexes, as a critical player in Myc-induced glutamine addiction. We show that p32 is a direct transcriptional target of Myc and that high level of Myc in malignant brain cancers correlates with high expression of p32. Attenuation of p32 expression reduced growth rate of glioma cells expressing Myc and impaired tumor formation in vivo. Loss of p32 in glutamine addicted glioma cells induced resistance to glutamine deprivation and imparted sensitivity to glucose withdrawal. Finally, we provide evidence that p32 expression contributes to Myc-induced glutamine addiction of cancer cells. Our findings suggest that Myc promotes the expression of p32, which is required to maintain sufficient respiratory capacity to sustain glutamine metabolism in Myc transformed cells.
منابع مشابه
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
Mammalian cells fuel their growth and proliferation through the catabolism of two main substrates: glucose and glutamine. Most of the remaining metabolites taken up by proliferating cells are not catabolized, but instead are used as building blocks during anabolic macromolecular synthesis. Investigations of phosphoinositol 3-kinase (PI3K) and its downstream effector AKT have confirmed that thes...
متن کاملAntagonizing Bcl-2 Family Members Sensitizes Neuroblastoma and Ewing’s Sarcoma to an Inhibitor of Glutamine Metabolism
Neuroblastomas (NBL) and Ewing's sarcomas (EWS) together cause 18% of all pediatric cancer deaths. Though there is growing interest in targeting the dysregulated metabolism of cancer as a therapeutic strategy, this approach has not been fully examined in NBL and EWS. In this study, we first tested a panel of metabolic inhibitors and identified the glutamine antagonist 6-diazo-5-oxo-L-norleucine...
متن کاملThe mTORC1/S6K1 Pathway Regulates Glutamine Metabolism through the eIF4B-Dependent Control of c-Myc Translation
Growth-promoting signaling molecules, including the mammalian target of rapamycin complex 1 (mTORC1), drive the metabolic reprogramming of cancer cells required to support their biosynthetic needs for rapid growth and proliferation. Glutamine is catabolyzed to α-ketoglutarate (αKG), a tricarboxylic acid (TCA) cycle intermediate, through two deamination reactions, the first requiring glutaminase...
متن کاملTargeting Glutamine Metabolism in Breast Cancer with Aminooxyacetate.
PURPOSE Glutamine addiction in c-MYC-overexpressing breast cancer is targeted by the aminotransferase inhibitor, aminooxyacetate (AOA). However, the mechanism of ensuing cell death remains unresolved. EXPERIMENTAL DESIGN A correlation between glutamine dependence for growth and c-MYC expression was studied in breast cancer cell lines. The cytotoxic effects of AOA, its correlation with high c-...
متن کاملTargeting MYC Dependence by Metabolic Inhibitors in Cancer
Abstract:MYC is a critical growth regulatory gene that is commonly overexpressed in a wide range of cancers. Therapeutic targeting of MYC transcriptional activity has long been a goal, but it has been difficult to achieve with drugs that directly block its DNA-binding ability. Additional approaches that exploit oncogene addiction are promising strategies against MYC-driven cancers. Also, drugs ...
متن کامل